Grille de correction hémophilie Pondichéry 2009.

L'hémophilie A est une maladie héréditaire due à une anomalie d'un fadeur de coagulation du sang,	0,25
le facteur VIII dont le gène est porté, comme il est dit dans l'énoncé, par le chromosome sexuel X. Nous allons voir si l'on peut se fier à un diagnostic prénatal effectué à six semaines de grossesse.	0,25
L'étude de l'arbre montre que la maladie apparaît chez des enfants II-4 alors que les parents I-1 et	
I-2 ne sont pas malades. (après saut d'une génération).	0,5
On peut donc en conclure que l'allèle de la maladie est récessif et sera noté m par rapport à l'allèle	
normal dominant noté N.	0,25
Le garçon II-4 : étant malade on peut donc en conclure qu'il a reçu un chromosome X avec l'allèle	
de la maladie de sa mère et un chromosome Y de son père.	0,25
Son génotype est donc : $\left(\begin{array}{c} X^m \\ \hline y \end{array}\right)$	0,25
La femme I-1 qui n'est pas malade a pour génotype : c'est une porteuse saine.	0,25
Son mari I-2 qui n'est pas malade a pour génotype : $\left(\begin{array}{c} X^{N} \\ \hline y \end{array}\right)$	0,25
Le monsieur II-2 qui est issu d'une autre famille et qui est marié avec Mme X a aussi le génotype :	0,25
De même le fils II-3 qui est sain a comme génotype : $\left(\begin{array}{c} X^{N} \\ \hline y \end{array}\right)$	0,25
Mme X II-1 n'est pas malade, mais elle a une possibilité d'avoir hérité du chromosome X^m de sa mère ; son génotype est donc :	0,5
une incertitude existe pour Madame X. D'où l'intérêt de l'analyse directe de l'ADN des membres de la famille et notamment de cette femme.	0,25
L'analyse du document 2 montre que l'allèle normal N a 3 sites de coupure pour l'enzyme bgl II.	0,25
donne deux fragments de restriction l'un de 300pb , l'autre de 280 pb et la sonde se fixe sur le fragment de 280 pb.	0,5
L'analyse du document 2 montre que l'allèle normal muté m a 2 sites de coupure pour l'enzyme bgl II.	0,25
Il donne un fragment de restriction de 580 pb et la sonde se fixe sur ce fragment de 580 pb.	0,5
Il est donc possible de différencier l'allèle normal N de l'allèle muté m.	0,25
Le doc 3 montre que Mme X a deux sortes de fragments de restriction marqués par la sonde.	0,25
Ce qui confirme qu'elle est hétérozygote et que son génotype est : Elle peut donc transmettre la maladie à ses fils.	0,75
L'homme II-3 n'a une seule sorte de fragments de restriction de 280 pb marqués par la sonde Ce qui confirme qu'il a pour génotype : $\left(\begin{array}{c} X^{N} \\ \hline Y \end{array}\right)$	0,5
L'homme II-4 n'a une seule sorte de fragments de restriction de 580 pb marqués par la sonde Ce qui confirme qu'il a pour génotype :	0,25

L'embryon III-1 n'a une seule sorte de fragments de restriction de 280 pb marqués par la sonde, ce qui signifie qu'il n'a que l'allèle normal N.	0,5	
	0,25	
Il pourrait donc s'agir soit d'une fille de génotype : $\left(\begin{array}{c} X^{N} \\ \hline X^{N} \end{array}\right)$	0,25	
Soit d'un garçon de génotype : $\left(\begin{array}{c} X^{N} \\ \hline Y \end{array}\right)$		
L'embryon a pour formule chromosomique XY, il correspond donc à un garçon sain.	0,25	
Bilan : Le diagnostic prénatal de l'hémophilie utilisant la technique du southern blot est donc tout à fait fiable.	0,25	
TOTAL	8,25	
Total à remettre sur 5		

j@©ques Florimont